A Lyapunov-type Theorem for Nonadditive

نویسنده

  • Nobusumi Sagara
چکیده

We prove the convexity and compactness of the closure of the lower partition range of an Rn-valued, nonatomic, supermodular capacity, employing a useful relationship between convex games and their Choquet integrals. The main result is applied to fair division problems, and the existence of Pareto optimal α-fair partitions is demonstrated for the case of nonadditive measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permanence and global asymptotic stability of a delayed predator-prey model with Hassell-Varley type functional response

Here, a predator-prey model with Hassell-Varley type functional responses is studied. Some sufficient conditions are obtained for the permanence and global asymptotic stability of the system by using comparison theorem and constructing a suitable Lyapunov functional. Moreover, an example is illustrated to verify the results by simulation.

متن کامل

Multifractal Analysis for Lyapunov Exponents on Nonconformal Repellers

For nonconformal repellers satisfying a certain cone condition, we establish a version of multifractal analysis for the topological entropy of the level sets of the Lyapunov exponents. Due to the nonconformality, the Lyapunov exponents are averages of nonadditive sequences of potentials, and thus one cannot use Birkhoff’s ergodic theorem neither the classical thermodynamic formalism. We use ins...

متن کامل

Mathematical Modeling and Lyapunov-Based Drug Administration in Cancer Chemotherapy

In this paper a new mathematical model is developed for the dynamics between tumor cells, normal cells, immune cells, chemotherapy drug concentration and drug toxicity. Then, the theorem of Lyapunov stability is applied to design treatment strategies for drug protocols that ensure a desired rate of tumor cell kill and push the system to the area with smaller tumor cells. Using of this theorem a...

متن کامل

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

Stability analysis of impulsive fuzzy differential equations with finite delayed state

In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009